Linkage of Drinking Water Contaminant and Birth Outcome Data in New York State

Steven Forand, MA, MS
Wayne Richter, MS
Sanjaya Kumar, MS

General Objective

Link Public Water Supply Monitoring Data on Disinfection Byproducts (DBPs) with Birth Outcome Data to Track Patterns and Trends in Time and Space

- Study Population NYS live births
 - 1998-2003

Why Link Birth Outcomes and Disinfection Byproducts (DBPs)

- Epidemiological studies have shown weak associations between DBPS (such as THMs) and adverse birth outcomes
 - Spontaneous fetal deaths
 - Low birth weight
 - Fetal growth restriction (IUGR, SGA)
 - Certain birth defects
- Short latency of birth outcomes
 - Limited exposure window

Birth Outcomes

- Low birth weight (<2500g)
- Preterm Birth (< 37 Weeks)</p>
- Term Low Birth Weight (≥37 weeks; <2500g)</p>
- > Small for Gestational Age (lowest 10th percentile for age)
- Birth Defects
 - 22 Birth Defects identified by EPHT Workgroup

Birth Outcome Data

- Electronic birth certificate records Vital Records
 - 250,000 per year
 - Geocoded to maternal address
 - ~94% Automatically geocoded
- ▶ 1998-2003 (~1.5 million births)
- Congenital Malformation Registry
 - Linked to birth certificate records

Birth Outcomes – Strengths / Weaknesses

Birth Defects

- Strengths
 - Exposure may be more specific to certain birth defects
 - More limited exposure window
- Weaknesses
 - Small numbers for specific defects
 - Grouping defects not biologically or etiologically sound
 - Regional reporting issues

Birth weight/Prematurity/SGA

- Strengths
 - More prevalent (larger numbers)
 - Numerator/Denominator from the same source (fewer reporting issues)
 - Well reported/Easily identified
- Weaknesses
 - Influence of SES, smoking, etc

Contaminants

- Total Trihalomethanes
 - Chloroform
 - Bromodichorlomethane
 - Dibromochloromethane
 - Bromoform
- Levels depend on source water characteristics such as level of organic matter, temperature as well as residence time

Environmental Database

- Safe Drinking Water Information System (SDWIS)/State
 - Monitoring results for total and individual THMs
 - Also contains information on HAAs, heavy metals, VOCs, pesticides, organics, nitrates, nitrites, radionuclides etc.
 - Mandated quarterly DBP monitoring for most systems
 - Some systems monitor more frequently
- Covers 90% of the State's population.
- Contains all sampling data not just violations

Water District Boundaries

- Developed a GIS layer of water supply system boundaries for systems serving >1,000 persons
 - County health departments water system boundaries
 - GIS/CAD files from service providers
 - On-screen digitizing / scanned paper maps/drawings
 - Tax parcel centroid data
- Cover 95% of the State's population served by public water (>16,000,000 individuals)

Total Trihalomethanes and Water Supply System Population

Data Linkage

- Geocode address at birth
 - Latitude/longitude estimated using automated geocoding system
- Assign each birth record to specific water district
 - Use GIS to make a "point in polygon" match
- Link DBP data from SDWIS based on the water district of birth

Exposure Assessment

- Assume water district at birth is a proxy for THM "exposure" throughout pregnancy
- For each pregnancy we attempted to assign 4 estimates for each contaminant
 - Assigned THM measurements for each trimester & full pregnancy
 - For birth defects only the first trimester was evaluated
- THM samples not evenly spaced in time (e.g, two "quarterly" measurements may be taken in the same week March 31 and April 1)

Exposure Metric

- Splines
- Weighted average
 - All samples +/- 30 days of trimester used
 - Multiple samples on the same day were averaged
 - The weight given to a day is based on the proportion of the exposure period for which the day provides information about DBP levels.

Exposure Assignment Total THMs (2003 Births)

	Births	Births	
Usable		Unusable	
	253,003	_	Total births
	244,469 (97%)	(3%)	Invalid Date
	212,733 (84%)	(13%)	Assign PWS
	170,429 (67%)	(17%)	Full pregnancy
	158,845 (63%)	(21%)	1st trimester
	160,113 (63%)	(21%)	2 nd trimester
	160,778 (64%)	(21%)	3 rd trimester

Analyses

- Exposure stratified prevalence rates of birth outcomes
- Logistic regression analysis
 - Controlled for:
 - mother's age, education, race, ethnicity, employment
 - gender, payor, and adequacy of prenatal care
- Analyzed birth weight as a continuous variable
 - Generalized Linear Model

Percent of Low Birthweight Births by Trimester

Upstate New York (including Long Island) 1998-2003

Total Trihalomethane Level

Low Birth Weight and TTHMs

	Long Island		New	York City	Upstate	NY
TTHM (ug/L)	OR	95%CI	OR	95% CI	OR	95% CI
0-10 (reference)	-	-	-	-	-	-
10-15	0.0	(0.0-1000)				
15-20	0.0	(0.0-1000)			1.1	(0.9-1.3)
20-25	0.0	(0.0-1000)	0.9	(0.8-0.9)	1.0	(0.9-1.2)
25-30	1.3	(0.2-10.2)	0.9	(0.8-0.9)	1.1	(0.9-1.3)
30-45	2.9	(0.9-10.1)	0.7	(0.7-0.8)	1.0	(0.8-1.1)
35-40	0.0	(0.0-1000)	1.0	(0.9-1.1)	1.0	(0.9-1.2)
40-60	0.0	(0.0-1000)	1.0	(0.9-1.1)	1.1	(0.9-1.2)
60-80	-	-			0.9	(0.8-1.0)
80 +	- /	//·	-		1.0	(0.9-1.3)

Validation Average Standard Error

Conclusions

- Odds Ratios close to 1 for most outcomes examined
 - LBW, Preterm, Term LBW, SGA
 - Individual THMs
- Little evidence of a dose response in any outcome-exposure combinations
- Surveillance system can be easily modified to examine other contaminants reported to SDWIS

Future Areas

- Incorporate HAA data into system
- Incorporate additional contaminants as recommended by the CWG
- Continue to analyze THMs
- Subdivide large heterogeneous water systems with multiple sampling points
- Interpolation in systems with little variability

The End

Steve Forand spf02@health.state.ny.us

Thanks

- Sanjaya Kumar Statistical Analysis sxk10@health.state.ny.us
- ➤ Wayne Richter Water Supply wxr04@health.state.ny.us